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¥The  exchange  rules  for  identical  particles, 
conÞned  to  propagate  in  two  spatial 
dimensions,  are  not  limited  to  the  bosonic 
and fermonic cases.1 

¥The  semiclassical  propagator  features 
discontinuities when it is applied to describe 
such  particles,  called  anyons.  Here  we 
demonstrate how these discontinuities can be 
understood  in  terms  of  an  unresolved 
diffraction effect. 
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Semiclassical propagator
¥The  quantum  propagator  describes  the 
probability  amplitude  to  Þnd  a  quantum 
system  prepared  at  xÕ=x(tÕ)  later  at  xÕÕ  = 
x(tÕÕ). It is given by the matrix element of the 
time-evolution operator U: 

¥The semiclassical propagator by Van-Vleck/
Gutzwiller 2 constitutes an approximation of 
K,  constructed  solely  from  classical 
trajectories connecting xÕ and xÕÕ:

¥    denotes  HamiltonÕs principal  function, 
the time integral over the Lagrangian     :
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¥The geometry of the cone leads to a fourfold 
increase of the centrifugal barrier

¥    determines the particle character:

Even multiples of      : bosons
Odd multiples of      : fermions
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¥The classical Hamilton function associated with 
the quantum Hamiltonian reads

             , and gives rise to the Lagrangian

!
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¥The last term in    does not alter the equations of 
motion,  yet  contributes  an  additional  term  to 
HamiltonÕs principal function.

¥On the cone, there exist  two trajectories which 
connect xÕ and xÕÕ:
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¥Classical quantities of importance are HamiltonÕs 
principal function

and the canonical relative angular momentum

Semiclassical approximation
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¥The propagation process in a) gives rise to
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whereas for the process in b) we Þnd

¥The  sign  change  in  the  exponential  factor  
associated with        implies a discontinuity when 
the  end  point  xÕÕ  is  situated  on  the  dotted 
auxiliary line.

Derivation from the quantum 
propagator

¥Exact quantum propagator:
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¥Semiclassical limit3 for small angular 
differences              :
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Exact  evaluation  by  the  method  of  stationary 
phase, with stationary point

which  coincides  with  the  classical      of  the 
(short) trajectory     , and  
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coincides with the contribution of this trajectory 
to the semiclassical propagator. 
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describing  Fresnel-like  diffraction.  Stationary 
phase  evaluation  here  constitutes  an 
approximation, stationary point:

coincides  with  the  classical  canonical  angular 
momentum      of the second trajectory      , and  

where the sign is opposite to that of             . 
¥Continuity  of  the  exact  solution  is  no  longer 
resolved; semiclassical propagator is obtained.

Conclusions
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Introduction

Two-stage semiclassical limit
¥ Þrst stage: 

-  continuous  quantum  mechanical  canonical     
relative angular momentum
- Fresnel-like diffraction process

¥ second stage: 
-  main  contribution  stems  from  the  classical 
relative canonical angular momenta 
- the diffraction process is no longer resolved 
after a stationary phase approximation.  
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